

Lecture 17:
Regular Expressions

CS103CS103

Winter 2025Winter 2025

First, Some Announcements!

Second Midterm Logistics
● Our second midterm is next Tuesday, February

25th, from 7-9 PM. Locations vary, but mostly
CEMEX.

● Topic coverage is primarily lectures 06 – 13
(functions through induction) and PS3 – PS5.
Finite automata and onward won’t be tested here.
● Because the material is cumulative, topics from PS1 –

PS2 and Lectures 00 – 05 are also fair game.
● Seating assignments are posted.
● Anisha and Zach will host an exam review session

this Sunday, February 23rd, 4-6 PM, in CoDa E160.

Preparing for the Exam
● The top skills that will serve you well on this exam:

● Knowing how to set up a proof. This is a recurring theme
across functions, sets, graphs, pigeonhole, and induction.

● Distinguishing between assuming and proving. This
similarly cuts across all of these topics.

● Reading new definitions. This is at the heart of
mathematical reasoning.

● Writing proofs in line with definitions. Folks often ask
about whether they’re being rigorous enough. Often
“rigorous enough” simply means “following what the
definitions say.”

● Our personal recommendation: when working through
practice problems, pay super extra close attention to
these areas.

Preparing for the Exam
● As with the first midterm exam, we’ve posted a bunch of

practice exams on the course website.
● There are ten practice exams (yes, really!). We realistically don’t

expect anyone to complete them all. They’re there to give you a
feeling of what the exam might look like.

● Some general notes on preparing:
● Q5 and Q6 on PS6, while technically on topics that aren’t covered

on the midterm, are great practice for the sorts of reasoning
you’ll need on the exam.

● Keep the TAs in the loop when studying. Ask for feedback on
any proofs you write when getting ready for the exam.

● Don’t skip on biological care and maintenance. Exams can be
stressful, but please make time for basic things like showering,
eating, etc. and for self-care in whatever form that takes for you.

● You can do this. Best of luck on the exam!

0-19 20-24 25-29 30-34 35-39 40-44 45-49

Problem Set Five Graded

75th Percentile: 44 / 49 (90%)
50th Percentile: 38 / 49 (78%)
25th Percentile: 34 / 82 (69%)

On to CS103!

Recap from Last Time

Test Your Recall
● A language L is called a ??? language if

there is a DFA for L.

Regular Languages
● A language L is called a regular language if

there is a DFA for L.

Regular Languages
● A language L is called a regular language if

there is a DFA or an NFA for L.

Regular Languages
● A language L is called a regular language if

there is a DFA or an NFA for L.
● Theorem: The following are equivalent:

● L is a regular language.
● There is a DFA D where (ℒ D) = L.
● There is an NFA N where (ℒ N) = L.

● In other words, knowing any one of the above
three facts means you know the other two.

Language Concatenation
● If w ∈ Σ* and x ∈ Σ*, then wx is the

concatenation of w and x.
● If L₁ and L₂ are languages over Σ, the

concatenation of L₁ and L₂ is the language
L₁L₂ defined as

L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb },

then
L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

Lots and Lots of Concatenation
● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.
{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation
● We can define what it means to

“exponentiate” a language as follows:
L0 = {ε} Ln+1 = LLn

● So, for example, { aa, b }3 is the language
{ aaaaaa, aaaab, aabaa, aabb,

baaaa, baab, bbaa, bbb}

The Kleene Star
● An important operation on languages is

the Kleene Star, which is defined as
L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }

● Mathematically:
w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

The Kleene Star
If L = { a, bb }, then L* = {

ε,
a, bb,

aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…
}

Think of L* as the set of strings you can
make if you have a collection of rubber
stamps – one for each string in L – and
you form every possible string that can be

made from those stamps.

A Property of Regular Languages
● Theorem: If L₁ and L₂ are regular

languages over an alphabet Σ, then so
are the following languages:
● L₁ ∪ L₂
● L₁L₂
● L₁*

● These (and other) properties are called
??? properties of the regular
languages.

Closure Properties
● Theorem: If L₁ and L₂ are regular

languages over an alphabet Σ, then so
are the following languages:
● L₁ ∪ L₂
● L₁L₂
● L₁*

● These (and other) properties are called
closure properties of the regular
languages.

New Stuff!

Another View of Regular Languages

Devices for Articulating Regular Languages

● Finite Automata

● Set (or other Mathematical) Notation

● State Transition Table

● New! Regular Expressions

q₀ start
a, b

 q₁
a, b

q₀

{ w ∈ Σ* | w’s length is even }

q0

q1

a b
q1q1

q0q0

Devices for Articulating Regular Languages

● Finite Automata

● Set (or other Mathematical) Notation

● State Transition Table

● New! Regular Expressions

q₀ start
a, b

 q₁
a, b

q₀

{ w ∈ Σ* | w’s length is even }

q0

q1

a b
q1q1

q0q0

Note: This one is not unique to regular
languages! We can express non-regular

languages with set builder notation, as well.
In contrast, having a DFA or NFA for a
language means it’s certainly regular.

Regular Expressions
● Regular expressions are a way of describing a

language via a string representation.
● They’re used just about everywhere:

● They’re built into the JavaScript language and used for
data validation.

● They’re used in the UNIX grep and flex tools to search
files and build compilers.

● They’re employed to clean and scrape data for large-
scale analysis projects.

● Conceptually, regular expressions are strings
describing how to assemble a larger language out
of smaller pieces.

Rethinking Regular Languages
● We currently have several tools for

showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages

together via closure properties to form L.
● We have not spoken much of this last

idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● This is a bottom-up approach to the
regular languages.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● This is a bottom-up approach to the
regular languages.

Atomic Regular Expressions
● The regular expressions begin with three

simple building blocks.
● The symbol Ø is a regular expression that

represents the empty language Ø.
● For any a ∈ Σ, the symbol a is a regular

expression for the language {a}.
● The symbol ε is a regular expression that

represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!

Compound Regular Expressions
● If R₁ and R₂ are regular expressions, R₁R₂ is

a regular expression for the concatenation of
the languages of R₁ and R₂.

● If R₁ and R₂ are regular expressions, R₁ ∪ R₂
is a regular expression for the union of the
languages of R₁ and R₂.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence
● Here’s the operator precedence for

regular expressions:
(R)
R*

R₁R₂
R₁ ∪ R₂

● So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expression Examples
● The regular expression trick∪treat represents

the language
{ trick, treat }.

● The regular expression booo* represents the
regular language

{ boo, booo, boooo, … }.
● The regular expression candy!(candy!)*

represents the regular language
{ candy!, candy!candy!, candy!candy!candy!, … }.

Regular Expressions, Formally
● The language of a regular expression is the

language described by that regular expression.
● Formally:

● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}
● ℒ(R1R2) = (ℒ R1) (ℒ R2)
● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.
(a b)*aa(a ∪ ∪ b)*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.
(a b)*∪ aa(a b)*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.
(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.
(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.
Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

Let Σ = {a, b}.
Let L = { w ∈ Σ* | |w| = 4 }.

The length of
a string w is
denoted |w|

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Write a regex for this language.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪
b*(a ε)b*∪
b*a*b* b*∪
b*(a* ε)b*∪

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)b*∪

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions
● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+

For Comparison

a+(.a+)*@a+(.a+)+

q1
start q3

@

q2

. a

q4
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

@, . @ @, .
 @

@, .

q0
a

@, .
Σ

Shorthand Summary
● Rn is shorthand for RR … R (n times).

● Edge case: define R⁰ = ε.
● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ε)∪ , meaning

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

The Lay of the Land

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.
Proof idea: Use induction!
● The atomic regular expressions all represent

regular languages.
● The combination steps represent closure

properties.
● So anything you can make from them must

be regular!

Thompson’s Algorithm
● In practice, many regex matchers use an

algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

Regular
Languages

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!
Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

These are all regular
expressions!

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀
start ab b∪ q₁

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for the original NFA.

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂ R , and ₂₁ R are ₂₂
arbitrary regular expressions.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean
regular expression from this NFA?

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform
this NFA so that it looks like this:

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The first step is going to be a
bit weird...

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R21 R11* R12

R22

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

What should we put on
this transition?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The State-Elimination Algorithm
● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the

NFA.
● Add an ε-transition from qs to the old start state of N.
● Add ε-transitions from each accepting state of N to qf, then

mark them as not accepting.
● Repeatedly remove states other than qs and qf from

the NFA by “shortcutting” them until only two states
remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

The State-Elimination Algorithm
● To eliminate a state q from the automaton, do the following

for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.
● Let Rout be the regex on the transition from q to q₁.
● If there is a regular expression Rstay on a transition from q

to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled
((Rin)(Rout))

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This Matters
● The equivalence of regular expressions

and finite automata has practical
relevance.
● Regular expression matchers have all the

power available to them of DFAs and NFAs.
● This also is hugely theoretically

significant: the regular languages can be
assembled “from scratch” using a small
number of operations!

Your Action Items
● Read “Guide to Regexes”

● There’s a lot of information and advice there
about how to write regular expressions, plus
a bunch of worked exercises.

● Read “Guide to State Elimination”
● It’s a beautiful algorithm. The Guide goes

into a lot more detail than what we did here.

Next Time
● Intuiting Regular Languages

● What makes a language regular?
● The Myhill-Nerode Theorem

● The limits of regular languages.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

